Question No.		Mark Scheme	Sub Mark	Mark
1 (a)	(i)	Sodium chloride	1	1
	(ii)	Ionic bond	1	1
	(iii)	1. Sodium atom released one electron	1	2
		2. Chlorine atom received one electron	1	
1 (b)	(i)	2.4	1	1
	(ii)	2.8	1	1
1 (c)	(i)	CCl ₄	1	1
	(ii)	1. Low melting point // boiling point // Cannot conduct electricity in molten and aqueous state	1	
		2. Weak force of attraction between molecule // No free moving ion	1	2
		TOTAL	9)

MARKING SCHEME PAPER 2 SET 2 JUJ CHEMISTRY 2018

Question No.		Mark Schome	Sub	Mark
		Wark Scheme	Mark	
2(a)	(i)	Silicone dioxide	1	1
	(ii)	Ethene	1	1
	(iii)	1. The presence of zinc atom will distrupt the orderly	1	
		arrangement in pure copper.		2
		2. The atoms not easily slide.	1	
(b)	(i)	Flavouring	1	1
	(ii)	Can cause formation of emulsion	1	1
	(iii)	Pandan leaf/Telang flower/Roselle/dragon fruit	1	1
		[any suitable natural colouring]		
(c)		Analgesic	1	2
		Antibiotic	1	
		TOTAL	9)
				1

Question No.		Mark Scheme	Sub Mark	Mark
3(a)		Increasing order of proton number	1	1
(b)		Oxygen //chlorine // bromine // argon	1	1
(c)		1. Sodium atom has one valence electron	1	
		2. three shells filled with electron	1	2
(d)		1. Argon atom achieve stable octet electron arrangement	1	
		2. cannot donate, receive or share electron with other atoms	1	2
		e-juj		

MARKING SCHEME PAPER 2 CHEMISTRY SET 2 JUJ PAHANG 2018

Question No.		Mark Scheme	Sub	Mark
			Mark	
(e)	(i)	1. Correct formula of reactant and product	1	
		2. Balanced	1	2
		$2Mg + O_2 \longrightarrow 2MgO$		
	(ii)	1. Mole ratio	1	
		2. Correct answer with correct unit	1	
		2 mol Mg: 2 mol MgO/		
		0.1 mol Mg: 0.1 mol MgO		
		$Jisim MgO = 0.1 \times 40 = 4g$		2
		TOTAL	1	10

2

Question No.		Mark Scheme	Sub Mark	Mark
4 (a)		Alkane	1	1
(b)		Pentane	1	1
(c)		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1 1	2
(d)	(i)	$C_5H_{12} + 8O_2 \rightarrow 5CO_2 + 6H_2O$ 1. Correct formula and reactant 2. Correct balanced	1	2
	(ii)	Carbon dioxide	1	1
	(iii)	1. Number of mol 2. Correct mol ratio 3. Correct answer with correct unit 1. mol = $\frac{7.2}{72}$ // 0.1 72 2. C ₅ H ₁₂ : CO ₂ 1 mol : 5 mol 0.1 mol : 0.5 mol 3. Volume of R = 0.5 x 24 dm ³ // 12 dm ³	1 1 1	3
		TOTAL	10	0

MARKING SCHEME PAPER 2 CHEMISTRY SET 2 JUJ PAHANG 2018

Question No.		Mark Scheme	Sub Mark	Mark
5 (a)		Standard solution is a solution in which its concentration is accurately known	1	1
5 (b)	(i)	1. Number of mol	1	
		2. Correct answer with correct unit	1	2
		1. mol = $\frac{(2)(100)}{1000}$ // 0.2 2. Mass NaOH = (0.2)(40) g // 8 g		
	(ii)	$1. (2)(100) = 200 \mathrm{M}_2$	1	
		2. $M_2 = 1.0 \text{ mol } dm^{-3}$	1	2
5 (c)	(i)	Image: Sulphuric acid Asid sulfurik Sodium hydroxide solution + phenolphthalein Larutan natrium hidroksida + fenolftalein 1. Functional diagram 2. Label	1	2
	(ii)	Pink to colourless	1	1
5(d)		 Antiseptic kills the germs Keep the alkaline pH of saliva // keep an alkaline condition in the mouth Neutralized the acid in the mouth 	1 1 1	3
		TOTAL	1	1

MARKING SCHEME PAPER 2 CHEMISTRY SET 2 JUJ PAHANG 2018

Ouestic	on No.	Mark Scheme	Sub	Mark	
Questie			Mark		
6(a)		Process whereby compounds in molten or aqueous state broken down into their elements by passing electricity through it.	1	1	
(b)		SO_4^{2-} dan OH ⁻	1	1	
(c)	(i)	1. Put blue litmus paper into the test tube	1		
		2. Blue litmus paper turns to red then white/bleached	1	2	
	(ii)	Electroplating // purification // extraction	1	1	
(d)		$Mg \rightarrow Mg^{2+} + 2e$	1		
		$Cu^{2+} + 2e \rightarrow Cu$	1	2	
(e)		The intensity blue colour of copper(II) sulphate solution in cell I and cell II is the same/not change.	1	1	
(f)		1 Eunctional apparatus	1		
		2. Label electrolyte (any suitable electrolyte)	1	3	
		3. Correct label for : (i) zinc and silver	1	C	
		(ii) positive and negative terminal			
		\sim			
		Silver			
		Argentum			
		Zinc +			
		Zink			
		Silver nitrate solution			
	ΤΟΤΑΙ			1	
		TOTAL		.1	

MARKING SCHEME PAPER 2 CHEMISTRY SET 2 JUJ PAHANG 2018

Question No			Mark Scheme		<u>Sub</u> <u>Mark</u>	Mark
7	(a)	1. Halogen X : chlorine wa	ater // bromine water		1	
		2. Name of product : Iodin	e		1	
		3. change of oxidation nun	nber of Chlorine//bromir	$he: 0 \rightarrow -1$	1	
		4. change of oxidation nun	nber of iodine : $-1 \rightarrow 0$		1	
		5. type of reaction occurred	5. type of reaction occurred for chlorine//bromine : reduction			
		6. type of reaction occurred for iodide ion/ potassium iodide : oxidation			1	
		7. Role of chlorine//bromine water : oxidising agent				
		8. Role of iodide ion/potassium iodide : reducing agent				
		9. Half equation : $Cl_2 + 2e \rightarrow 2Cl^-$				
	10. Half equation : $2I \rightarrow I_2 + 2e$				1	
						10
	(b) 1. Metal Y : Mg//Magnesium // Zn//Zinc // (any suitable metal higher than				1	
	Cu in reactivity series)					
		2. Sample answer : $Mg + C$	$CuO \rightarrow MgO + Cu$		1	
		3. Mg gain oxygen			1	
		4. Mg undergoes oxidation			1	
		5. CuO loss oxygen			1	
		6. CuO undergoes reductio	n		1	
						6
	(c)					
			Situation I	Situation II		
		1. Type of reaction	Oxidation	Oxidation	1	
		2. Condition	Present of oxygen	Present of		
				oxygen and	1 +1	
				water		
		4. paint the body // alloy th	ne iron // (any suitable m	ethod)	1	4
					ТОТАТ	4
					IUIAL	20
						1

MARKING SCHEME PAPER 2 CHEMISTRY SET 2 JUJ PAHANG 2018

Question No		Mark scheme	<u>Sub</u>	<u>mark</u>
8	(a) (i)	 Draw a graph volume of carbon dioxide gas liberated against time. 1. Axes are labelled with correct unit 2. Suitable scales are used and size of graph more than half graph paper 3. All points are plotted correctly 4. Smooth curve of graphs Sample answer 	1 1 1 1	4
	(ii)	 Calculate the rate of reaction at 90s correctly 1. Shown the tangent in graph paper 	1	
		2. State answer with unit	1	
		Volume of gas $/ \text{ cm}^3$		
		$ \begin{array}{c} $		
		= <u>20</u> cm ³ s ⁻¹ // 0.133 cm ³ s ⁻¹ ± 0.05		
		• Calculate the average rate of reaction with unit = $38 - 29$ cm ³ s ⁻¹ // 0.15cm ³ s ⁻¹ 120-60	1	3
	(iii)	1. Size of marble powder in experiment II is smaller than size of marble	1	
		 chips in experiment I total surface area of marble in experiment II is larger compare to experiment I 	1	
		 Frequency of collision between hydrogen ions and calcium carbonate particle in Experiment II is higher than in experiment I 	1	
		4. Frequency of effective collision in Experiment II is higher than in	1	
		5. Rate of reaction in experiment II is higher than experiment I	1	5
L	I			

Question No		Mark scheme	<u>Sub</u>	mark
			<u>mark</u>	
	(b)	1. 83.00 cm^3 // double / twice the volume of experiment II	1	
		2. The concentration of H ⁺ in experiment III is twice than in experiment II	1	
		3. number of hydrogen ions per unit volume in experiment III is bigger	1	
		 Frequency of collision between hydrogen ions and calcium carbonate particle in Experiment III is higher 	1	
		5. Frequency of effective collision in Experiment III is higher	1	5
	(c)			
		1. To allow size to be smaller	1	
		2. total surface area of antacid to react is larger.	1	
		3. Rate of absorption increases	1	3
	TOTAL MARKS			20

Question No		Mark scheme	<u>Sub</u>	mark
			<u>mark</u>	
9	(a)	1. Exothermic reaction // displacement reaction	1	
		2. Label energy and draw correct level of energy for reactant and		
		product		
		3. Write correct equation for reactant, product and $H = X k I mol^{-1}$	1	
		$\Pi = -24$ kJ mol	1	3
		answer:		
		Energy		
		\uparrow		
		$Fe + 2AgNO_3$		
		$H = -X \text{ kJ mol}^{-1}$		
		$\frac{2Ag + Fe (INO_3)_2}{2}$		
	(b) (i)	1. Number of mol = $0.1 (200)$ // 0.02	1	
		1000		
		2 heat change $-0.02x 2100001/1/42001$		
		2. Heat change = $0.02x 210000377 + 2003$	1	
		$3. \theta = \underline{4200}$	1	
		200 (4.2)	1	
		$A = \theta - 5^{0}C$	1	4
		H. 0-3 C	1	4
		⊖_TT TT		
	1			

MARKING SCHEME PAPER 2 CHEMISTRY SET 2 JUJ PAHANG 2018

Question No	Mark scheme	Sub	<u>mark</u>
		mark	
(11)	Exercise of H		
	Experiment II Experiment III		
	Exothermic reaction Endothermic reaction	1	
	Heat is released Heat is absorbed	1	
	Temperature of Temperature of	1	
	surroundings increases surroundings decreases	1	
	Total energy content of Total energy content of		
	reactant is higher than product is higher than		
	total energy content of total energy content of		3
	reactant		5
()	*any three		
(111)	1 Suggested metanial , Dh (NO)	1	
	1. Suggested material : $PO(NO_3)_2$ 2. Measure 200 cm ³ of 0.1 mol dm ⁻³ load(II) nitrate and noun into	1	
	2. Measure 200 cm of 0.1 mor dm lead(1) intrate and pour into	1	
	3 Measure and record the initial temperature of the solution	1	
	4 Add 2 spatula zinc into the same polystyrene cup	1	
	5 The mixture is stirred	1	
	6 Record the highest temperature	1	
	0. Record the ingliest competitute	1	
	Able to draw :		
	1. Functional diagram	1	
	2. Labelled	1	
	Zinc		
	polystyrene cup cawan polistrena Lead(II) nitrate		
	Plumbum(11) nitrat		
	Two precautions:		
	1. The initial temperature area taken after a few minute	1	
	2. The higher temperature must the highest temperature in the	1	
	solution		
	5. Metal powders are used instead of metal granules to reduce the heat loss to surrounding		
	4. Use polystyrene cup to reduce the heat lost		
	*any two		10
	TOTAL MARKS		20

MARKING SCHEME PAPER 2 CHEMISTRY SET 2 JUJ PAHANG 2018

e-IU

Question No		Mark Scheme	<u>Sub</u> <u>Mark</u>	<u>Mark</u>
10	(a)	 ion Y⁻: Chloride ion // nitrate ion ammonia solution hydrochloric acid // nitric acid NH₃ + HCl → NH₄Cl // NH₃ + HNO₃ → NH₄NO₃ 	1 1 1 1	4
	(b)	Able to identify NH ₄ ⁺ ion 1. Put 2 cm ³ of solution Q into two test tube, A and B 2. In test tube A, put a few drops of Nessler's reagent 3. brown precipitate form 4. confirm NH ₄ ⁺ ion present	1 1 1 1	
		Alternative answer to identify NH_4^+ ion 1. Put 2 cm ³ of solution Q into two test tube, A and B 2. In test tube A, put a few drops of NaOH solution and heat 3. pungent smell gas formed that turns red litmus paper to blue 4. confirm NH_4^+ ion present	1 1 1 1	
		Able to identify Cl ⁻ ion 5. In test tube B, put 1 cm ³ nitric acid solution and 1 cm ³ silver nitrate solution 6. White precipitate formed. Confirm Cl ⁻ ions.	1	
		If NO ₃ ⁻ ion 5. In test tube B, put 1 cm ³ sulphuric acid solution and 1 cm ³ iron (II) sulphate solution	1	
		6. Put a few drops of concentrated support actd slowly 7. Brown ring formed. Confirm NO_3^- ions.	1	Max 6
	(c)	Sample answer 1. Pipette [20-50 cm ³] of ammonia solution [0.5-2.0 moldm ⁻³] into a conical flask	1	
		 Add 2-3 drops of phenolphthalein into the conical flask Fill burette with [0.5-2.0 moldm⁻³] hydrochloric acid and record the 	1	
		4. Titrate dilute hydrochloric acid from the burette slowly and swirl the solution until pink colour change to colourless	1	
		5. Record the final burette reading and calculate the volume of	1	
		6. Repeat the experiment by using the exact volume of hydrochloric acid without indicator.	1	
		7. Transfer the salt solution into evaporating dish and heat untill it is saturated	1	
		8. Cool to room temperature	1	
		9. Filter the solution 10 Dry the salt crystal by using filter paper		10
		TOTAL	MARKS	20
			-	

END OF MARKING SCHEME

